彩票

彩票 彩票

教师风采

导师信息

当前位置: 彩票开奖 -> 教师风采 -> 正文

刘文涵

日期:2024-08-30

个人简介

刘文涵,男,博士,讲师(内聘副教授),硕士生副导师,本科(2012~2016)、硕士(2016~2019)、博士(2021~2024)均毕业于武汉大学,2019~2021年于阿里巴巴集团担任算法工程师。主持省级科研项目2项,参与国家自然科学基金面上项目1项,在SCI期刊发表论文二十余篇,其中以一作身份发表13篇,担任若干SCI期刊审稿人,包括《Knowledge-based Systems》、《IEEE Journal of Biomedical and Health Informatics》、《Biomedical Signal Processing and Control》等。

✦研究方向

※人工智能

※心电信号处理

※物联网健康监护

※片上系统(SoC)


✦主要科研项目

※主持省级科研项目2项

※参与国家自然科学基金面上项目1项


✦论文成果

一作论文如下:(注:影响因子与分区以论文发表当时为准)

[1] Liu Wenhan, Pan Shurong, Li Zhoutong, et al. Lead-fusion Barlow twins: A fused self-supervised learning method for multi-lead electrocardiograms[J]. Information Fusion, 2025, 114: 102698. (中科院1TOP,影响因子14.800)

[2] Liu Wenhan, Guo Qianxi, Gao Xinwei, et al. Lead Separation and Combination: A Novel Unsupervised 12-Lead ECG Feature Learning Framework for Internet of Medical Things[J]. IEEE Internet of Things Journal, 2022, 9(23): 23897-23914. (中科院1TOP,影响因子10.238)

[3] Liu Wenhan, Pan Shurong, Chang Sheng, et al. Direct Lead Assignment: A Simple and Scalable Contrastive Learning Method for ECG and Its IoMT Applications[J]. IEEE Internet of Things Journal, 2025, 12(5): 5672-5686.(中科院1TOP,影响因子8.200)

[4] Liu Wenhan, Pan Shurong, Chang Sheng, et al. Self-Supervised Learning for Electrocardiogram Classification Using Lead Correlation and Decorrelation [J]. Applied Soft Computing, 2025, 172: 112871. (中科院1TOP,影响因子7.200)

[5] Liu Wenhan, Zhang Huaicheng, Chang Sheng, et al. Learning Representations for Multilead Electrocardiograms From Morphology-Rhythm Contrast[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1-15. (中科院2TOP,影响因子5.600)

[6] Liu Wenhan, Li Zhoutong, Zhang Huaicheng, et al. Dense lead contrast for self-supervised representation learning of multilead electrocardiograms[J]. Information Sciences, 2023, 634: 189-205. (中科院1TOP,影响因子8.100)

[7] Liu Wenhan, Pan Shurong, Li Zhoutong, et al. Bootstrap each lead’s latent: A novel method for self-supervised learning of multilead electrocardiograms[J]. Computer Methods and Programs in Biomedicine, 2024, 257: 108452. (中科院2TOP,影响因子4.900)

[8] Liu Wenhan, Zhang Huaicheng, Chang Sheng, et al. A joint cross-dimensional contrastive learning framework for 12-lead ECGs and its heterogeneous deployment on SoC[J]. Computers in Biology and Medicine, 2023, 152: 106390. (中科院2区,影响因子6.698)

[9] Liu Wenhan, Wang Fei, Huang Qijun, et al. MFB-CBRNN: A Hybrid Network for MI Detection Using 12-Lead ECGs[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 503-514. (中科院2区,影响因子4.217)

[10] Liu Wenhan, Zhang Mengxin, Zhang Yidan, et al. Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 22(5): 1434-1444. (中科院2区,影响因子3.850)

[11] Liu Wenhan, Guo Qianxi, Chen Siyun, Chang Sheng, Wang Hao, He Jin, Huang Qijun. A fully-mapped and energy-efficient FPGA accelerator for dual-function AI-based analysis of ECG[J]. Frontiers in Physiology, 2023, 14. (中科院2TOP,影响因子4.755)

[12] Liu Wenhan, Ji Jiewei, Chang Sheng, et al. EvoMBN: Evolving Multi-Branch Networks on Myocardial Infarction Diagnosis Using 12-Lead Electrocardiograms[J]. Biosensors, 2022, 12(1),15. (中科院3区,影响因子5.519)

[13] Liu Wenhan, Huang Qijun, Chang Sheng, et al. Multiple-feature-branch convolutional neural network for myocardial infarction diagnosis using electrocardiogram[J]. Biomedical Signal Processing and Control, 2018, 45: 22-32.(中科院3区,影响因子2.943)

学术主页:

//scholar.google.com.hk/citations?hl=zh-CN&user=yE2BxnAAAAAJ&view_op=list_works&sortby=pubdate


✦联系方式

Email[email protected]